脂蛋白相关磷脂酶A2在慢病管理与血栓形成预警中的临床价值

作者:邓新立
2021-12-16

作者:王科宇   邓新立

脂蛋白相关磷脂酶A2(lipoprotein-associated phospholipase A2,Lp-PLA2)是磷脂酶超家族中的亚型之一,分子量45kDa,因其对血小板活化因子(PAF)的水解作用而最初被称为血浆血小板活化因子乙酰水解酶(PAF-acetylhydrolase,PAF-AH)。Lp-PLA2具有Ca2+非依赖性磷脂酶A2活性,其可催化血小板活化因子(PAF)和氧化磷脂(OxPL)的sn-2位的酯键水解。Lp-PLA2主要由血管壁内成熟的巨噬细胞、T淋巴细胞、单核细胞及肥大细胞等所分泌[1-3]。分泌后,Lp-PLA2通过与血浆中的脂蛋白结合而进入血液循环,绝大多数Lp-PLA2与低密度脂蛋白(low density lipoprotein,LDL)结合(70~80%),而较少量与高密度脂蛋白(high density lipoprotein,HDL)结合(20~30%),同时Lp-PLA2也可以结合极低密度脂蛋白(very low density lipoprotein,VLDL)和脂蛋白a(Lipoprotein(a),Lp(a))[4, 5]。 

Lp-PLA2于20世纪80年代初被发现,基于其具有水解促炎性磷脂PAF的能力,因此当时提出Lp-PLA2具有抗炎作用[6, 7]。同时,有研究表明在动脉损伤后,Lp-PLA2的局部高表达可以消除切应力引起的动脉血栓形成。在此过程中,Lp-PLA2除了直接使PAF失活外,还抑制炎性反应诱导的血栓前分子(如组织因子)的表达,这也有助于抑制切应力引起的血栓形成[8]。然而,当后续研究证明Lp-PLA2还可以将氧化磷脂(oxidatively modified phospholipids,OxPL)水解成氧化游离脂肪酸(oxidized free fatty acid,OxFFA)和溶血磷脂酰胆碱(lysophosphatidylcholine,lyso-PC)时,又提出了Lp-PLA2具有促炎和促氧化活性[6, 9]。它与OxPL一样,Lp-PLA2催化其的两种产物都表现出来促炎和致动脉粥样硬化的功能。LysoPC似乎表现出了Lp-PLA2衍生的大多数促炎作用,它可以靶向结合内皮细胞,平滑肌细胞,单核细胞/巨噬细胞,T细胞和嗜中性粒细胞;同时其又可影响细胞活力、炎性细胞的归巢以及内皮细胞和平滑肌细胞的功能响应,并诱导氧化应激和免疫反应[10]。此外,最近有研究表明,lysoPC会引起中枢神经系统的周细胞减少,这表明其与血脑屏障(blood brain barrier,BBB)受损相关[11]。

近来研究显示,冠状动脉疾病的主要风险因子包括C反应蛋白、白细胞计数和纤维蛋白原等,但他们的预测能力因与其他冠状动脉危险因素(年龄、血压、血脂等)有关而减弱。而Lp-PLA2与冠脉疾病呈强正相关,其可以作为预测冠心病(coronary heart disease,CHD)患者预后的良好生物标志物,其独立于传统(例如LDL-C,血压,吸烟)和新发现(例如CRP)的风险因子[12, 13]。此外,另一项关于32项前瞻性研究的分析表明,Lp-PLA2的质量与活性均与冠心病事件呈对数线性相关,对高危冠心病人群的预测有积极的提示作用[14]。同时有研究表明,在LDL-C<130mg/dl的人群中,如果Lp-PLA2和hsCRP同时升高,其冠心病风险增加3倍[15]。Lp-PLA2除了可以预测冠心病风险,还可以预测脑卒中、心衰等疾病风险[16-18]。此外,高Lp-PLA2和CRP水平与中风的发生风险相关,而与传统的血管危险因素无关,并且彼此独立,而联合使用Lp-PLA2和CRP可以识别出中风风险特别高的个体[19]。虽然Lp-PLA2与动脉血栓形成和炎症状态相关,一项关于65岁以上老年人的研究表明,Lp-PLA2与静脉血栓形成的潜力无相关性[20]。

Lp-PLA2在动脉粥样硬化斑块中的表达上调,在易损斑块内的巨噬细胞上也有高表达,尤其是在容易发生破裂斑块的坏死核心和纤维帽中。易损斑块的不稳定性导致斑块破裂、脂质进入血管腔,激活凝血系统进而形成血栓,导致血管阻塞是引起急性心脑血管事件的主要原因[21]。Lp-PLA2水解斑块中的OxPL以产生促炎和促动脉粥样硬化的产物,进一步引起内皮功能障碍,斑块炎症和斑块中坏死核心的形成[22, 23]。此外,Lp-PLA2可能通过促炎介质的生成,通过正反馈机制进一步募集更多的巨噬细胞、T淋巴细胞和肥大细胞的产生Lp-PLA2[10]。因此,Lp-PLA2参与动脉粥样硬化发展的多个阶段,其可诱导斑块易损性增加,导致血栓形成。其作为不稳定粥样硬化斑块的标志物,它与斑块的稳定性丧失及破裂和心脑血管事件发生的风险密切相关。

最近研究表明,在动脉粥样硬化的发生发展过程中,血浆Lp-PLA2在动脉粥样硬化中的作用可能取决于与该酶结合的脂蛋白颗粒的类型[6, 24]。例如,它与LDL相关和与Lp(a)相关的Lp-PLA2表现出相似的促炎和动脉粥样硬化活性,而与HDL相关的Lp-PLA2可能发挥抗炎和抗动脉粥样硬化作用[25]。LDL-Lp-PLA2(LDL相关Lp-PLA2)具有抗炎和抗动脉粥样硬化作用归因于其促进PAF的分解代谢和失活,同时,由于LDL-Lp-PLA2可以水解OxPL并且产生OxFFA和lyso-PC,所以其还有促炎和致动脉粥样硬化的作用。一项关于高加索人群的大型研究数据表明,血浆LpPLA2(主要是LDL-Lp-PLA2)在原发性高胆固醇血症和合并高脂血症的患者中升高,这提示其可以作为一种独立于传统风险因素并且可与传统风险因素叠加的心血管风险的标志物[5, 26]。与之相反,研究表明HDL相关的Lp-PLA2(HDL-Lp-PLA2)具有抗炎,抗氧化和抗动脉粥样硬化的活性,并且其还在体外增强HDL诱导的胆固醇外运[5, 24]。HDL-Lp-PLA2在合并高脂血症,原发性高甘油三酯血症,前期糖尿病和代谢综合征患者中表达降低[5, 24],并且还与降低心脏病死亡风险独立相关[27]。Lp(a)相关的Lp-PLA2(Lp(a)-Lp-PLA2)的作用尚未得到充分研究。在表现出高Lp(a)血浆水平的受试者中,Lp(a)-Lp-PLA2可以起到类似于在动脉壁中观察到的LDL-Lp-PLA2的作用[28-30]。

目前绝大多数已知研究集中于血浆Lp-PLA2活性的改变,这主要反映的是与LDL结合的Lp-PLA2的生物学作用。由于Lp-PLA2的促炎作用和其在血液中的高度分布,以及在流行病学研究中观察到血浆Lp-PLA2水平升高与许多血管性疾病相关[31-34],为了确定Lp-PLA2在发病机制中的确切作用,人们在动物模型或临床试验中探索了Lp-PLA2能否作为一个新的治疗靶标。研究表明他汀类药物可通过降低血脂间接抑制Lp-PLA2的表达,同时可以使冠心病事件发生风险减少了23%[35]。在一项临床II期试验中发现,Lp-PLA2抑制剂Darapladib尚未达到预期的治疗效果,包括其对动脉粥样硬化的可变形性,斑块成分及大小,CRP水平和总动脉粥样硬化体质的影响[36]。虽然Darapladib给药可抑制坏死核心扩张,但是只有通过精细的临床影像数据才能得出这个结论[37]。一项III期临床试验STABILITY(Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy)表明使用Darapladib不会影响疾病的主要结果,包括稳定冠心病患者心血管死亡、心肌梗死或中风的时间[38]。与之结果相似,另一项III期临床试验SOLID-TIMI 52(Stabilization of Plaques using Darapladib-Thrombolysis in Myocardial Infarction 52)发现将Darapladib加入急性冠脉综合征的标准治疗后,主要冠脉疾病的发生并没有减少[39]。综上所述,尽管许多临床试验的发现都表明了血浆总Lp-PLA2(主要是LDL相关Lp-PLA2)是心血管疾病的独立危险因素,但最近两项III期临床试验(STABILITY和SOLID-TIMI 52)证实使用Lp-PLA2的特异性抑制剂Darapladib在心血管疾病的一级和二级预防方面无临床效果。

虽然临床试验中已经证实未达到预期治疗效果,但是Darapladib在动物模型和部分受试者中确实显示出了一些功效。在一项关于Lp-PLA2基因敲除小鼠的研究发现,Lp-PLA2可能在循环中不发挥作用,并且其在发挥水解作用发生之前可能需要底物转运至细胞内[40]。在各种动物模型中,Darapladib和相关化合物显著降低了冠状动脉粥样硬化病变的发展,减少了血管病变中巨噬细胞的含量,并缓解了斑块炎症。同时分析脂质代谢物的变化表明Darapladib可能具有抗氧化作用和/或其他“脱靶”效应[9]。虽然Darapladib治疗与猪动脉粥样硬化病变中lysoPC含量降低有关[41],但是Darapladib并未影响截短的OxPL的水平,这种OxPL截短体是由Lp-PLA2水解产生的[42],并且在两种动脉粥样硬化小鼠模型中其没有改变小鼠血清PAF水平[43, 44]。Darapladib除了对脂质代谢的影响外,其在体内还可以抑制caspase-3和caspase-8活性[36, 44],并且与Darapladib相关的化合物(SB222657)在体外抑制由氧化LDL诱导的巨噬细胞凋亡[45]。以上结果说明,Darapladib除了对Lp-PLA2有抑制作用外可能还有别的活性。这些“副作用”可能使其在体内发挥其他功能。因此,虽然这些临床试验的失败使Lp-PLA2抑制剂作为动脉粥样硬化治疗药物的前景黯淡,但并不能否认Lp-PLA2在动脉粥样硬化疾病中的作用及风险评估价值,同时并不限制其治疗其他疾病的潜力。

Lp-PLA2作为一种新型血管炎性标志物,其检测能直接的反应血管内炎症的程度,同时作为心脑血管疾病的风险评估因子,得到了大量的动物实验、临床流行病学以及临床相关研究的支持。2005年美国食品药品监督管理局(Food and Drug Administration,FDA)已批准LP-PLA2用于预测冠心病和缺血性卒中风险,并于2014年批准Lp-PLA2检测用于无冠心病患者的冠心病风险评估。目前,包括欧洲心脏病学会,美国心脏病学会,美国心脏协会和美国内分泌学会在内的多个国际学会的指南均将Lp-PLA2活性测量纳入了对无症状成人患者的危险分层。2010年ACCF/AHA无症状成人心血管危险评估指南提出可考虑对中等风险的无症状成人进行Lp-PLA2检测以进一步评估其发病风险[46];2011AHA/ASA卒中一级预防指南提出在未患有心血管疾病的患者中检测炎性指标如hsCRP或Lp-PLA2可以鉴别出有较高卒中风险的患者[47];2012 ESC欧洲心血管疾病预防临床实践指南指出对有复发急性血栓事件的高风险的患者可以检测Lp-PLA2以进一步评估风险[48]。2017年AACE/ACE血脂异常管理与动脉粥样硬化疾病预防指南明确指出,Lp-PLA2是动脉粥样硬化和脑血管意外强相关、独立的危险因素,并且其较hsCRP更为特异[49]。中国也在2015年提出专家共识,建议Lp-PLA2作为一项新的风险因子,在传统危险因素基础上进一步评估心脑血管患者的危险分层[50]。

虽然Lp-PLA2在心脑血管疾病的风险评估中发挥着重要的作用,然而Lp-PLA2在其他疾病模型中的功能和作用机制以及风险评估能力尚待进一步研究。因此,有必要从多方面、多角度深入探究和阐释Lp-PLA2在血管炎性疾病中发挥作用及其作用机制,以期找到对这类疾病更为有效的治疗途径。


参考文献

  1. Winkler, K. et al. Platelet-activating factor acetylhydrolase activity indicates angiographic coronary artery disease independently of systemic inflammation and other risk factors: the Ludwigshafen Risk and Cardiovascular Health Study. Circulation 111, 980-987, doi:10.1161/01.CIR.0000156457.35971.C8 (2005).

  2. Brilakis, E. S. et al. Association of lipoprotein-associated phospholipase A2 levels with coronary artery disease risk factors, angiographic coronary artery disease, and major adverse events at follow-up. European heart journal 26, 137-144, doi:10.1093/eurheartj/ehi010 (2005).

  3. Kolodgie, F. D. et al. Lipoprotein-associated phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology 26, 2523-2529, doi:10.1161/01.ATV.0000244681.72738.bc (2006).

  4. Dennis, E. A., Cao, J., Hsu, Y. H., Magrioti, V. & Kokotos, G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chemical reviews 111, 6130-6185, doi:10.1021/cr200085w (2011).

  5. Tellis, C. C. & Tselepis, A. D. Pathophysiological role and clinical significance of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) bound to LDL and HDL. Current pharmaceutical design 20, 6256-6269 (2014).

  6. Tselepis, A. D. & John Chapman, M. Inflammation, bioactive lipids and atherosclerosis: potential roles of a lipoprotein-associated phospholipase A2, platelet activating factor-acetylhydrolase. Atherosclerosis. Supplements 3, 57-68 (2002).

  7. Stafforini, D. M. & Zimmerman, G. A. Unraveling the PAF-AH/Lp-PLA2 controversy. Journal of lipid research 55, 1811-1814, doi:10.1194/jlr.E052886 (2014).

  8. Arakawa, H. et al. Local expression of platelet-activating factor-acetylhydrolase reduces accumulation of oxidized lipoproteins and inhibits inflammation, shear stress-induced thrombosis, and neointima formation in balloon-injured carotid arteries in nonhyperlipidemic rabbits. Circulation 111, 3302-3309, doi:10.1161/CIRCULATIONAHA.104.476242 (2005).

  9. Rosenson, R. S. & Stafforini, D. M. Modulation of oxidative stress, inflammation, and atherosclerosis by lipoprotein-associated phospholipase A2. Journal of lipid research 53, 1767-1782, doi:10.1194/jlr.R024190 (2012).

  10. Zalewski, A. & Macphee, C. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arteriosclerosis, thrombosis, and vascular biology 25, 923-931, doi:10.1161/01.ATV.0000160551.21962.a7 (2005).

  11. Muramatsu, R. et al. Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system. The Journal of biological chemistry 290, 11515-11525, doi:10.1074/jbc.M114.587253 (2015).

  12. Packard, C. J. et al. Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. The New England journal of medicine 343, 1148-1155, doi:10.1056/NEJM200010193431603 (2000).

  13. Li, D. et al. Lipoprotein-associated phospholipase A2 in coronary heart disease: Review and meta-analysis. Clinica chimica acta; international journal of clinical chemistry 465, 22-29, doi:10.1016/j.cca.2016.12.006 (2017).

  14. Lp, P. L. A. S. C. et al. Lipoprotein-associated phospholipase A(2) and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet 375, 1536-1544, doi:10.1016/S0140-6736(10)60319-4 (2010).

  15. Ballantyne, C. M. et al. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Circulation 109, 837-842, doi:10.1161/01.CIR.0000116763.91992.F1 (2004).

  16. 16 Nambi, V. et al. Lipoprotein-associated phospholipase A2 and high-sensitivity C-reactive protein improve the stratification of ischemic stroke risk in the Atherosclerosis Risk in Communities (ARIC) study. Stroke 40, 376-381, doi:10.1161/STROKEAHA.107.513259 (2009).

  17. Elkind, M. S., Tai, W., Coates, K., Paik, M. C. & Sacco, R. L. High-sensitivity C-reactive protein, lipoprotein-associated phospholipase A2, and outcome after ischemic stroke. Archives of internal medicine 166, 2073-2080, doi:10.1001/archinte.166.19.2073 (2006).

  18. Suzuki, T. et al. Lipoprotein-associated phospholipase A(2) and risk of congestive heart failure in older adults: the Cardiovascular Health Study. Circulation. Heart failure 2, 429-436, doi:10.1161/CIRCHEARTFAILURE.108.839613 (2009).

  19. Ballantyne, C. M. et al. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident ischemic stroke in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Archives of internal medicine 165, 2479-2484, doi:10.1001/archinte.165.21.2479 (2005).

  20. Olson, N. et al. Lipoprotein-associated phospholipase A2 and risk of venous thrombosis in older adults. American journal of hematology 83, 524-527, doi:10.1002/ajh.21182 (2008).

  21. Abbate, R., Cioni, G., Ricci, I., Miranda, M. & Gori, A. M. Thrombosis and acute coronary syndrome. Thrombosis research 129, 235-240, doi:10.1016/j.thromres.2011.12.026 (2012).

  22. Yang, E. H. et al. Lipoprotein-associated phospholipase A2 is an independent marker for coronary endothelial dysfunction in humans. Arteriosclerosis, thrombosis, and vascular biology 26, 106-111, doi:10.1161/01.ATV.0000191655.87296.ab (2006).

  23. Tousoulis, D., Papageorgiou, N., Androulakis, E. & Stefanadis, C. Lp-PLA2--a novel marker of atherosclerosis: to treat or not to treat? International journal of cardiology 165, 213-216, doi:10.1016/j.ijcard.2012.09.210 (2013).

  24. Tellis, C. C. & Tselepis, A. D. The role of lipoprotein-associated phospholipase A2 in atherosclerosis may depend on its lipoprotein carrier in plasma. Biochimica et biophysica acta 1791, 327-338, doi:10.1016/j.bbalip.2009.02.015 (2009).

  25. Tselepis, A. D. Oxidized phospholipids and lipoprotein-associated phospholipase A2 as important determinants of Lp(a) functionality and pathophysiological role. Journal of biomedical research 31, doi:10.7555/JBR.31.20160009 (2018).

  26. Moutzouri, E., Tsimihodimos, V. & Tselepis, A. D. Inflammatory biomarkers and cardiovascular risk assessment. Current knowledge and future perspectives. Current pharmaceutical design 19, 3827-3840 (2013).

  27. Rallidis, L. S. et al. Lipoprotein-associated phospholipase A(2) bound on high-density lipoprotein is associated with lower risk for cardiac death in stable coronary artery disease patients: a 3-year follow-up. Journal of the American College of Cardiology 60, 2053-2060, doi:10.1016/j.jacc.2012.06.057 (2012).

  28. Leitinger, N. Oxidized phospholipids as modulators of inflammation in atherosclerosis. Current opinion in lipidology 14, 421-430, doi:10.1097/01.mol.0000092616.86399.dc (2003).

  29. Morishita, R. et al. Association of serum oxidized lipoprotein(a) concentration with coronary artery disease: potential role of oxidized lipoprotein(a) in the vasucular wall. Journal of atherosclerosis and thrombosis 16, 410-418 (2009).

  30. Wei, D. H. et al. Oxidized lipoprotein(a) increases endothelial cell monolayer permeability via ROS generation. Lipids 48, 579-586, doi:10.1007/s11745-013-3795-1 (2013).

  31. Munzel, T. & Gori, T. Lipoprotein-associated phospholipase A(2), a marker of vascular inflammation and systemic vulnerability. European heart journal 30, 2829-2831, doi:10.1093/eurheartj/ehp311 (2009).

  32. Siddiqui, M. K. et al. Lp-PLA2 activity is associated with increased risk of diabetic retinopathy: a longitudinal disease progression study. Diabetologia 61, 1344-1353, doi:10.1007/s00125-018-4601-7 (2018).

  33. Acosta, S. et al. Lp-PLA2 activity and mass for prediction of incident abdominal aortic aneurysms: A prospective longitudinal cohort study. Atherosclerosis 262, 14-18, doi:10.1016/j.atherosclerosis.2017.04.014 (2017).

  34. Lehtinen, L. et al. PLA2G7 associates with hormone receptor negativity in clinical breast cancer samples and regulates epithelial-mesenchymal transition in cultured breast cancer cells. The journal of pathology. Clinical research 3, 123-138, doi:10.1002/cjp2.69 (2017).

  35. White, H. D. et al. Changes in lipoprotein-Associated phospholipase A2 activity predict coronary events and partly account for the treatment effect of pravastatin: results from the Long-Term Intervention with Pravastatin in Ischemic Disease study. Journal of the American Heart Association 2, e000360, doi:10.1161/JAHA.113.000360 (2013).

  36. Serruys, P. W. et al. Effects of the direct lipoprotein-associated phospholipase A(2) inhibitor darapladib on human coronary atherosclerotic plaque. Circulation 118, 1172-1182, doi:10.1161/CIRCULATIONAHA.108.771899 (2008).

  37. Suckling, K. Phospholipase A2s: developing drug targets for atherosclerosis. Atherosclerosis 212, 357-366, doi:10.1016/j.atherosclerosis.2010.03.011 (2010).

  38. Investigators, S. et al. Darapladib for preventing ischemic events in stable coronary heart disease. The New England journal of medicine 370, 1702-1711, doi:10.1056/NEJMoa1315878 (2014).

  39. O'Donoghue, M. L. et al. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial. Jama 312, 1006-1015, doi:10.1001/jama.2014.11061 (2014).

  40. Liu, J. et al. Circulating platelet-activating factor is primarily cleared by transport, not intravascular hydrolysis by lipoprotein-associated phospholipase A2/ PAF acetylhydrolase. Circulation research 108, 469-477, doi:10.1161/CIRCRESAHA.110.228742 (2011).

  41. Wilensky, R. L. et al. Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development. Nature medicine 14, 1059-1066, doi:10.1038/nm.1870 (2008).

  42. Davis, B. et al. Electrospray ionization mass spectrometry identifies substrates and products of lipoprotein-associated phospholipase A2 in oxidized human low density lipoprotein. The Journal of biological chemistry 283, 6428-6437, doi:10.1074/jbc.M709970200 (2008).

  43. Wang, W. Y. et al. Inhibition of lipoprotein-associated phospholipase A2 ameliorates inflammation and decreases atherosclerotic plaque formation in ApoE-deficient mice. PloS one 6, e23425, doi:10.1371/journal.pone.0023425 (2011).

  44. Hu, M. M. et al. The inhibition of lipoprotein-associated phospholipase A2 exerts beneficial effects against atherosclerosis in LDLR-deficient mice. Acta pharmacologica Sinica 32, 1253-1258, doi:10.1038/aps.2011.127 (2011).

  45. Carpenter, K. L. et al. Inhibition of lipoprotein-associated phospholipase A2 diminishes the death-inducing effects of oxidised LDL on human monocyte-macrophages. FEBS letters 505, 357-363 (2001).

  46. Greenland, P. et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 122, 2748-2764, doi:10.1161/CIR.0b013e3182051bab (2010).

  47. Goldstein, L. B. et al. Guidelines for the primary prevention of stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42, 517-584, doi:10.1161/STR.0b013e3181fcb238 (2011).

  48. Perk, J. et al. European guidelines on cardiovascular disease prevention in clinical practice (version 2012) : the fifth joint task force of the European society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). International journal of behavioral medicine 19, 403-488, doi:10.1007/s12529-012-9242-5 (2012).

  49. Jellinger, P. S. et al. American Association Of Clinical Endocrinologists And American College Of Endocrinology Guidelines for Management Of Dyslipidemia And Prevention Of Cardiovascular Disease. Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists 23, 1-87, doi:10.4158/EP171764.APPGL (2017).

  50. 中国老年学学会心脑血管病专业委员会 & 中国医师协会检验医师分会心脑血管病专家委员会. 脂蛋白相关磷脂酶A2临床应用专家建议. 中华心血管病杂志 10 (2015).

杂志后跟_副本.png