尿液中糖尿病肾病检测指标在早期诊断与监测中的意义

作者:吕晓婷 赵志杰
作者单位:河北省沧州市人民医院检验科 2022-04-26

吕晓婷,硕士、检验师。现任河北省沧州市人民医院检验科检验师,毕业于天津医科大学免疫学专业,从事临床基础检验工作3年,参与发表英文文章2篇,中文文章1篇。



赵志杰,硕士、副主任检验技师。现任河北省沧州市人民医院检验科副主任;兼任河北省沧州市检验医师协会委员,从事临床检验及血液检验10多年,获奖科研课题两项,在研课题一项,发表论文近10篇。


【摘要】糖尿病肾病是糖尿病最严重的并发症之一,其患病率已超过慢性肾小球肾炎,成为我国终末期肾脏病的首要病因。糖尿病肾病一旦发展到终末期,往往比其他肾病的治疗更棘手,因此早期诊断对于延缓病情意义重大。本文就近年来尿液中发现的糖尿病肾病的检测指标进行探讨。

我国是世界上最大的糖尿病流行国家,糖尿病患者长期血糖增高,大血管和微血管受损并严重危及肾脏等器官。糖尿病肾病是糖尿病最常见以及最严重的并发症之一,它是指糖尿病患者晚期微血管发生病变而导致肾小球硬化,其发病率随着糖尿病发病率的增加而增加[1]。肾小球和肾小管间质损伤是糖尿病肾病病理生理和进展的重要因素,临床以蛋白尿和水肿等为典型特征,且病情呈不可逆性进行性发展[2]。糖尿病肾病患者中40%会进展到终末期肾病,需要进行肾脏替代治疗,降低了患者的生活质量,大大增加了患者的死亡率[3]。糖尿病肾病的早期诊断直接影响患者的治疗和疾病病程,由于传统的检测指标如尿微量白蛋白、肌酐、尿素受影响的因素较多,有一定的局限性,因此需要联合新的检测指标用于疾病的治疗控制和风险分层。本文就近年来在尿液发现的糖尿病肾病检测指标进行探讨,为临床提供参考。


一、载脂蛋白型前列腺素D合成酶


载脂蛋白型前列腺素D合成酶(Lipocalin-type prostaglandin D2 synthase,L-PGDS)是脂蛋白家族中一种分泌蛋白,由大脑的脉络丛或软脑膜合成,随脑脊液分泌到血液中,通过将PGH2转化为PGD2从而在花生四烯酸的代谢中起重要作用[4, 5]。血清L-PGDS通过肾脏随尿排出,其肾小球清除率是肌酐清除率的6%以下[6]。L-PGDS的化学性质与白蛋白相似,但其分子量远小于白蛋白,因此比白蛋白更易通过肾小球毛细血管壁[7]。近年来,L-PGDS与糖尿病肾损害关系的报道越来越多。肾小球损伤时,其滤过膜通透性增加,尿L-PGDS水平上升。二型糖尿病患者尿L-PGDS明显高于健康人群,且与尿蛋白水平相关[8]。Uehara等研究者报道,尿L-PGDS在预测无蛋白尿患者的病程发展有重要作用,其敏感性和特异性分别为56-59%和75-88%[7]。

胰岛素作用于肌肉、肝脏和脂肪组织,使葡萄糖转化为糖原和脂肪,而胰高血糖素由于分解代谢作用而促使肝脏糖原分解和糖异生,从而导致血糖水平升高,因此胰高血糖素的过度分泌对糖尿病患者和动物的高血糖状态维持起非常重要的作用[9]。Davani等人用不同浓度的L-PGDS作用于经葡萄糖预处理的小鼠胰岛素瘤胰岛α细胞,结果显示较高浓度的L-PGDS会减少胰高血糖素的分泌[4]。由此可见,L-PGDS在对胰腺α细胞所分泌的胰高血糖素的调节中发挥作用,为未来抗糖尿病药物开发提供了新的方向。


二、中性粒细胞明胶酶相关脂蛋白


中性粒细胞明胶酶相关脂蛋白(Neutrophil gelatinase-associated lipocalin,NGAL)是一种与中性粒细胞明胶酶共价结合的含有178个氨基酸的小分子蛋白,属于脂蛋白家族,通过促进间充质祖细胞的上皮分化促进肾脏发育[10, 11]。NGAL主要由肾小管上皮细胞产生,也少量存在于肺等器官中,通过尿液排出,是肾小管损伤的标志[12-14]。5岁以后血液和尿液NGAL水平不受年龄影响[15]。NGAL容易通过肾小球滤过膜,在原尿中主要通过内吞作用被近端小管中重吸收[15]。1型糖尿病患者出现微量或大量蛋白尿之前尿NGAL水平已经升高,表明NGAL在预测肾损伤方面具有高敏感性。Mori和Nakao等人认为被破坏的肾单位产生NGAL,而完全坏死的肾单位不产生NGAL,因此NGAL反映的不是肾功能,而是肾脏活动损害的结果[16]。NGAL被证实在急性肾损伤诊断中意义重大。在一项针对患有急性肾损伤的成年人横断面研究中发现,与正常对照组相比,通过Western blot技术发现尿液和血清NGAL显著增加[15]。受试者的尿液和血清NGAL水平与血清肌酐相关,且NGAL积聚于皮质小管中[15]。尿液和血浆NGAL的水平在血清肌酐升高前2天就已发生改变,能够更早地预测急性肾损伤的发生[17]。急性心衰患者入院时血清NGAL水平与随后出现肾功能恶化的风险相关,这表明NGAL在肾损伤早期具有诊断价值[15]。


三、肾脏损伤分子


肾脏损伤分子(Kidney injury molecule 1,KIM-1)是一种具有免疫球蛋白和粘蛋白样结构域的1型上皮跨膜糖蛋白,是近端小管损伤的敏感标志物[18]。当肾脏受到损害时,KIM-1在基质蛋白酶作用下由肾脏跨膜区域裂解并释放入血,参与多种病理进程[19, 20]。急性肾缺血、中毒性肾损害以及有蛋白尿的肾脏疾病的动物模型中KIM-1的水平升高[21, 22]。在急性肾小管坏死患者的肾脏组织中,与坏死细胞相邻的肾小管细胞里也发现KIM-1的表达[23, 24]。慢性肾脏病患者肾活检发现KIM-1主要表达在近端肾小管的管腔侧,与纤维化和炎症增加有关[25]。有学者认为,尿KIM-1的水平升高与尿蛋白无关,而与糖尿病肾病的进展有关[26]。蛋白尿阴性的2型糖尿病患者在疾病早期出现近端小管损伤,其尿KIM-1显著升高[27]。在2型糖尿病和微量蛋白尿患者中,KIM-1值正常或轻度升高,并在随访期间其水平逐渐升高[28]。有研究发现,糖尿病肾病患者经血管紧张素转换酶抑制剂(Angiotensin converting enzyme inhibitor,ACEI)治疗后蛋白尿有效缓解,同时发现尿KIM-1水平降低,这与血糖控制和血压降低无关[18]。Nielsen等科学家发现KIM-1水平对1型糖尿病患者肾小球滤过率下降无显著预后价值[26]。


四、脂肪酸结合蛋白


1. 肝型脂肪酸结合蛋白:肝型脂肪酸结合蛋白(liver-type fatty acid-binding protein,L-FABP)是一分子量为14kDa的蛋白质,参与长链脂肪酸的代谢,它主要在肝脏中表达,也在人类近端肾小管细胞的细胞质中表达[29]。L-FABP可早期发现急性肾损伤,Ting-Hui Chiang等人在27例急性肾损伤的患者中检测了尿液或血液中L-FABP的水平,发现其敏感性为0.74,特异性为0.78,且ROC曲线下面积为0.82[30]。在患有肾脏疾病的动物模型中研究发现,尿蛋白、高血压、高血糖、肾小管缺血和肾毒性损害均使L-FABP基因在肾脏中的表达上调[31, 32]。在一项针对1型和2型糖尿病患者的研究中发现,来自近端小管的L-FABP尿排泄率可预测并监测肾功能不全。在无蛋白尿的2型糖尿病患者中,L-FABP也是诊断早期糖尿病肾病的标志物[29]。有研究发现,尿L-FABP的水平与肾小管间质损伤的严重程度以及糖尿病肾病的发展进程相关[33]。因此,尿L-FABP可作为筛查肾功能不全的临床标志物,且预测疾病的预后有积极作用。


2. 心肌型脂肪酸结合蛋白:心肌型脂肪酸结合蛋白(Heart-type fatty acid-binding protein,H-FABP)又名乳腺源性生长抑制物,是一种由FABP3基因编码的分子量为51.2kDa的蛋白质,主要在心肌中表达,也是肾小管间质炎症的标志物。有研究发现,有蛋白尿的1型糖尿病患者尿H-FABP水平升高。Nielsen等学者提出,H-FABP可能是独立于其他风险因素的预测死亡率的指标[34]。在一项研究中发现,无蛋白尿的糖尿病患者尿NAG、NGAL和H-FABP水平较对照组升高,且与肾小球滤过率呈负相关[35, 36]。


五、8-羟基脱氧鸟苷


8-羟基脱氧鸟苷(Urinary 8-oxo-7,8-dihydro-2-deoxyguanosine,8-oHdG)是一种细胞内氧化应激的标志物,是活性氧自由基攻击DNA分子中的鸟嘌呤碱基第8位碳原子的产物[37]。近年来8-oHdG被视为用于糖尿病诊断的一种有价值的标志物,其不由肝脏代谢而随尿液排出[37]。在一项5年的随访研究中发现,8-oHdG是衡量糖尿病肾病发展的有用临床指标,与尿8-oHdG呈中低水平的患者相比,尿高水平的8-oHdG患者糖尿病肾病进展更明显[38]。1型糖尿病患者发病9年后尿中8-oHdG水平升高与血糖控制不良相关[39]。此外,Broedbaek等人提出,尿8-oHdG可能是预测糖尿病患者的死亡率的有效指标[40]。


本文我们论述了5种近年来在尿液中发现的与糖尿病肾病诊断相关的检测指标,将这些指标与传统的诊断指标相结合可以对糖尿病肾病进行早期诊断和监测,延缓糖尿病肾病的发展速度,减轻患者的痛苦和经济负担,提高患者的生存质量。


参考文献


Preguica I, Alves A, Nunes S, et al. Diet-Induced Rodent Models of Diabetic Peripheral Neuropathy, Retinopathy and Nephropathy. Nutrients 12: 2020. doi: 10.3390/nu12010250.

Akpinar K, Aslan D, Fenkci SM. Assessment of estimated glomerular filtration rate based on cystatin C in diabetic nephropathy. J Bras Nefrol 43: 340-348, 2021. doi: 10.1590/2175-8239-JBN-2020-0145.

Papadopoulou-Marketou N, Kanaka-Gantenbein C, Marketos N, et al. Biomarkers of diabetic nephropathy: A 2017 update. Crit Rev Clin Lab Sci 54: 326-342, 2017. doi: 10.1080/10408363.2017.1377682.

Davani D, Kumar S, Palaia T, et al. Lipocalin-type prostaglandin D2 synthase reduces glucagon secretion in alpha TC-1 clone 6 cells via the DP1 receptor. Biochem Biophys Rep 4: 224-227, 2015. doi: 10.1016/j.bbrep.2015.09.019.

Tanaka R, Miwa Y, Mou K,et al. Knockout of the l-pgds gene aggravates obesity and atherosclerosis in mice. Biochem Biophys Res Commun 378: 851-856, 2009. doi: 10.1016/j.bbrc.2008.11.152.

Ogawa M, Hirawa N, Tsuchida T, et al. Urinary excretions of lipocalin-type prostaglandin D2 synthase predict the development of proteinuria and renal injury in OLETF rats. Nephrol Dial Transplant 21: 924-934, 2006. doi: 10.1093/ndt/gfk009.

Uehara Y, Makino H, Seiki K,et al. Urinary excretions of lipocalin-type prostaglandin D synthase predict renal injury in type-2 diabetes: a cross-sectional and prospective multicentre study. Nephrol Dial Transplant 24: 475-482, 2009. doi: 10.1093/ndt/gfn515.

Cohen-Bucay A, Viswanathan G. Urinary markers of glomerular injury in diabetic nephropathy. Int J Nephrol 2012: 146987, 2012. doi: 10.1155/2012/146987.

Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. Am J Physiol Endocrinol metab 284: E671-678, 2003. doi: 10.1152/ajpendo.00492.2002.

Garg V, Kumar M, Mahapatra HS,et al. Novel urinary biomarkers in pre-diabetic nephropathy. Clin Exp Nephrol 19: 895-900, 2015. doi: 10.1007/s10157-015-1085-3.

Chae HW, Shin JI, Kwon AR, et al. Spot urine albumin to creatinine ratio and serum cystatin C are effective for detection of diabetic nephropathy in childhood diabetic patients. J Korean Med Sci 27: 784-787, 2012. doi: 10.3346/jkms.2012.27.7.784.

Nauta FL, Boertien WE, Bakker SJ, et al. Glomerular and tubular damage markers are elevated in patients with diabetes. Diabetes Care 34: 975-981, 2011. doi: 10.2337/dc10-1545.

Lacquaniti A, Donato V, Pintaudi B, et al. "Normoalbuminuric" diabetic nephropathy: tubular damage and NGAL. Acta Diabetol 50: 935-942, 2013. doi: 10.1007/s00592-013-0485-7.

Thrailkill KM, Moreau CS, Cockrell GE, et al. Disease and gender-specific dysregulation of NGAL and MMP-9 in type 1 diabetes mellitus. Endocrine 37: 336-343, 2010. doi: 10.1007/s12020-010-9308-6.

Devarajan P. Neutrophil gelatinase-associated lipocalin: a promising biomarker for human acute kidney injury. Biomark Med 4: 265-280, 2010. doi: 10.2217/bmm.10.12.

Mori K, Nakao K. Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Int 71: 967-970, 2007. doi: 10.1038/sj.ki.5002165.

Wheeler DS, Devarajan P, Ma Q, et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med 36: 1297-1303, 2008. doi: 10.1097/CCM.0b013e318169245a.

Vaidya VS, Niewczas MA, Ficociello LH,et al. Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl-beta-D-glucosaminidase. Kidney Int 79: 464-470, 2011. doi: 10.1038/ki.2010.404.

Ning L, Rong J, Zhang Z, Xu Y. Therapeutic approaches targeting renin-angiotensin system in sepsis and its complications. Pharmacol Res 167: 105409, 2021. doi: 10.1016/j.phrs.2020.105409.

Wu C, Ma J, Yang H, et al. Interleukin-37 as a biomarker of mortality risk in patients with sepsis. J Infect 82: 346-354, 2021. doi: 10.1016/j.jinf.2021.01.019.

Ichimura T, Hung CC, Yang SA, et al. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol 286: F552-563, 2004. doi: 10.1152/ajprenal.00285.2002.

van Timmeren MM, Bakker SJ, Vaidya VS, et al. Tubular kidney injury molecule-1 in protein-overload nephropathy. Am J Physiol Renal Physiol 291: F456-464, 2006. doi: 10.1152/ajprenal.00403.2005.

Vaidya VS, Ramirez V, Ichimura T,et al. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol 290: F517-529, 2006. doi: 10.1152/ajprenal.00291.2005.

Han WK, Bailly V, Abichandani R, et al. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 62: 237-244, 2002. doi: 10.1046/j.1523-1755.2002.00433.x.

van Timmeren MM, van den Heuvel MC, Bailly V, et al. Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol 212: 209-217, 2007. doi: 10.1002/path.2175.

Nielsen SE, Andersen S, Zdunek D, et al. Tubular markers do not predict the decline in glomerular filtration rate in type 1 diabetic patients with overt nephropathy. Kidney Int 79: 1113-1118, 2011. doi: 10.1038/ki.2010.554.

Petrica L, Vlad A, Gluhovschi G, et al. Proximal tubule dysfunction is associated with podocyte damage biomarkers nephrin and vascular endothelial growth factor in type 2 diabetes mellitus patients: a cross-sectional study. PLoS One 9: e112538, 2014. doi: 10.1371/journal.pone.0112538.

de Carvalho JA, Tatsch E, Hausen BS, et al. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as indicators of tubular damage in normoalbuminuric patients with type 2 diabetes. Clin Biochem 49: 232-236, 2016. doi: 10.1016/j.clinbiochem.2015.10.016.

Kamijo-Ikemori A, Sugaya T, Yasuda T, et al. Clinical significance of urinary liver-type fatty acid-binding protein in diabetic nephropathy of type 2 diabetic patients. Diabetes Care 34: 691-696, 2011. doi: 10.2337/dc10-1392.

Chiang TH, Yo CH, Lee GH, et al. Accuracy of Liver-Type Fatty Acid-Binding Protein in Predicting Acute Kidney Injury: A meta-Analysis. J Appl Lab Med 7: 421-436, 2022. doi: 10.1093/jalm/jfab092.

Matsui K, Kamijo-Ikemorif A, Sugaya T, et al. Renal liver-type fatty acid binding protein (L-FABP) attenuates acute kidney injury in aristolochic acid nephrotoxicity. Am J Pathol 178: 1021-1032, 2011. doi: 10.1016/j.ajpath.2010.12.002.

Ichikawa D, Kamijo-Ikemori A, Sugaya T, et al. Renal liver-type fatty acid binding protein attenuates angiotensin II-induced renal injury. Hypertension 60: 973-980, 2012. doi: 10.1161/HYPERTENSIONAHA.112.199828.

33 Kamijo A, Kimura K, Sugaya T, et al. Urinary fatty acid-binding protein as a new clinical marker of the progression of chronic renal disease. J Lab Clin Med 143: 23-30, 2004. doi: 10.1016/j.lab.2003.08.001.

Rathcke CN, Vestergaard H. YKL-40--an emerging biomarker in cardiovascular disease and diabetes. Cardiovasc Diabetol 8: 61, 2009. doi: 10.1186/1475-2840-8-61.

Parving HH, Oxenboll B, Svendsen PA, et al. Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol (Copenh) 100: 550-555, 1982. doi: 10.1530/acta.0.1000550.

Bakoush O, Tencer J, Tapia J, et al. Higher urinary IgM excretion in type 2 diabetic nephropathy compared to type 1 diabetic nephropathy. Kidney Int 61: 203-208, 2002. doi: 10.1046/j.1523-1755.2002.00108.x.

Wu LL, Chiou CC, Chang PY,et al. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta 339: 1-9, 2004. doi: 10.1016/j.cccn.2003.09.010.

Hinokio Y, Suzuki S, Hirai M, et al. Urinary excretion of 8-oxo-7, 8-dihydro-2'-deoxyguanosine as a predictor of the development of diabetic nephropathy. Diabetologia 45: 877-882, 2002. doi: 10.1007/s00125-002-0831-8.

Leinonen J, Lehtimaki T, Toyokuni S, et al. New biomarker evidence of oxidative DNA damage in patients with non-insulin-dependent diabetes mellitus. FEBS Lett 417: 150-152, 1997. doi: 10.1016/s0014-5793(97)01273-8.

Broedbaek K, Weimann A, Stovgaard ES,et al. Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine as a biomarker in type 2 diabetes. Free Radic Biol Med 51: 1473-1479, 2011. doi: 10.1016/j.freeradbiomed.2011.07.007.